Hepatic FTO expression is increased in NASH and its silencing attenuates palmitic acid-induced lipotoxicity.

نویسندگان

  • Andrea Lim
  • Jin Zhou
  • Rohit A Sinha
  • Brijesh K Singh
  • Sujoy Ghosh
  • Kiat-Hon Lim
  • Pierce Kah-Hoe Chow
  • Esther C Y Woon
  • Paul M Yen
چکیده

Non-alcoholic steatohepatitis (NASH) is one of the most common causes of liver failure worldwide. It is characterized by excess fat accumulation, inflammation, and increased lipotoxicity in hepatocytes. Currently, there are limited treatment options for NASH due to lack of understanding of its molecular etiology. In the present study, we demonstrate that the expression of fat mass and obesity associated gene (FTO) is significantly increased in the livers of NASH patients and in a rodent model of NASH. Furthermore, using human hepatic cells, we show that genetic silencing of FTO protects against palmitate-induced oxidative stress, mitochondrial dysfunction, ER stress, and apoptosis in vitro. Taken together, our results show that FTO may have a deleterious role in hepatic cells during lipotoxic conditions, and strongly suggest that up-regulation of FTO may contribute to the increased liver damage in NASH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective Effects of Linoleic Acid against the Cytotoxicity of Palmitic Fatty Acid in Rat Cardiomyocytes

Background & Aims: Lipotoxicity is the process through which accumulation of lipid intermadiates leads to cellular dysfunction. The worldwide prevalence of cardiovascular diseases has been increased dramatically due to lipotoxicity. According to the peformed studies, saturated and unsaturated fatty acids differ significantly in their contributions to lipotoxicity. It has been r...

متن کامل

Ameliorative Role of Palmitoleic Acid on Palmitate Induced Lipotoxicity in the Rat Cardiomyocytes

Background: Co-supplementation of unsaturated fatty acids (FAs) with saturated FAs may decrease the adverse effects of saturated FA-induced lipotoxicity. The objective of the present study was to evaluate the effect of palmitoleic acid (unsaturated fatty acid) on palmitic acid (saturated fatty acid) induced lipotoxicity criteria in the primary culture of adult rat cardiomyocytes. Methods: Ce...

متن کامل

Uncoupling Protein 2 Regulates Palmitic Acid-Induced Hepatoma Cell Autophagy

Mitochondrial uncoupling protein 2 (UCP2) is suggested to have a role in the development of nonalcoholic steatohepatitis (NASH). However, the mechanism remains unclear. Autophagy is an important mediator of many pathological responses. This study aims to investigate the relationship between UCP2 and hepatoma cells autophagy in palmitic acid- (PA-) induced lipotoxicity. H4IIE cells were treated ...

متن کامل

Attenuated lipotoxicity and apoptosis is linked to exogenous and endogenous augmenter of liver regeneration by different pathways

Nonalcoholic fatty liver disease (NAFLD) covers a spectrum from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. Free fatty acids (FFA) induce steatosis and lipo-toxicity and correlate with severity of NAFLD. In this study we aimed to investigate the role of exogenous and endogenous ALR (augmenter of liver regeneration) for FFA induced ER (endoplasmatic reticulum) -stress ...

متن کامل

Allantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions

Objective(s): Non-alcoholic steatohepatitis (NASH) is defined by steatosis and inflammation in the hepatocytes, which can progress to cirrhosis and possibly hepatocellular carcinoma. However, current treatments are not entirely effective. Allantoin is one of the principal compounds in many plants and an imidazoline I receptor agonist as well. Allantoin has positive eff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 479 3  شماره 

صفحات  -

تاریخ انتشار 2016